翻訳と辞書 |
Global section functor : ウィキペディア英語版 | Global section functor
Let ''X'' be a topological space, and denote the category of sheaves with values in . Then the map that associates to a sheaf its global sections is a covariant functor to . If is the category of abelian groups, then this functor is left exact. This important remark leads to the notion of sheaf cohomology, ''via'' derived functors. ==Examples==
*Let , i.e. the direct sum indexed by connected components of ''X'' *Let be the sheaf of holomorphic functions on the compact connected complex manifold ''X'', then by the maximum principle, global sections are constant, ''ie.'' *Let denote the twisting sheaves on the projective space , then for , and 0 for .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Global section functor」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|